Positivity characterization of nonlinear DAEs. Part II: A flow formula for linear and nonlinear DAEs using projections
نویسندگان
چکیده
We present a closed solution formula for differential-algebraic equations (DAEs) that generalizes the concept of the flow to linear and nonlinear problems of arbitrary index. This flow is stated in the original coordinate system and thus allows to study coordinate depending properties like positivity, in particular. Embedded in the concept of the strangeness-index, we separate the differential and algebraic components by a projection approach and remodel a given DAE as a semi-explicit system. Exploiting the results found in [2], we solve this system and compute a closed solution formula. Verifying that this solution is unique defined by the original DAE and uniquely related with a given consistent initial values, we construct the flow associated with a DAE with regular strangeness-index. A flow formula for linear and nonlinear DAEs using projections. 3
منابع مشابه
Positivity characterization of nonlinear DAEs. Part I: Decomposition of differential and algebraic equations using projections
In this paper, we prepare the analysis of differential-algebraic equations (DAEs) with regard to properties as positivity, stability or contractivity. To study these properties, the differential and algebraic components of a DAE must be separated to quantify when they exhibit the desired property. For the differential components, the common results for ordinary differential equations (ODEs) can...
متن کاملExtending explicit and linearly implicit ODE solvers for index-1 DAEs
Nonlinear differential-algebraic equations (DAE) are typically solved using implicit stiff solvers based on backward difference formula or RADAU formula, requiring a Newton-Raphson approach for the nonlinear equations or using Rosenbrock methods specifically designed for DAEs. Consistent initial conditions are essential for determining numeric solutions for systems of DAEs. Very few systems of ...
متن کاملNumerical solution of higher index DAEs using their IAE's structure: Trajectory-prescribed path control problem and simple pendulum
In this paper, we solve higher index differential algebraic equations (DAEs) by transforming them into integral algebraic equations (IAEs). We apply collocation methods on continuous piece-wise polynomials space to solve the obtained higher index IAEs. The efficiency of the given method is improved by using a recursive formula for computing the integral part. Finally, we apply the obtained algo...
متن کاملSpectral Collocation Methods for Differential-Algebraic Equations with Arbitrary Index
In this paper, a symmetric Jacobi–Gauss collocation scheme is explored for both linear and nonlinear differential-algebraic equations (DAEs) of arbitrary index.After standard index reduction techniques, a type of Jacobi–Gauss collocation scheme with N knots is applied to differential part whereas another type of Jacobi–Gauss collocation scheme with N + 1 knots is applied to algebraic part of th...
متن کاملIterative Solution of Nonlinear Equations for Spark Methods Applied to Daes
We consider a broad class of systems of implicit differential-algebraic equations (DAEs) including the equations of mechanical systems with holonomic and nonholonomic constraints. We approximate numerically the solution to these DAEs by applying a class of super partitioned additive Runge-Kutta (SPARK) methods. Several properties of the SPARK coefficients, satisfied by the combination of Lobatt...
متن کامل